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1. Framework
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2. Losses are not Homogeneous wrt Volume

 Expected Loss ($) = Volume ($ / t) x Time (t)
 For fixed t (t=1), expected loss = volume

 A(x,t) := aggregate losses from volume x insured for time t
 E[ A(x,t) ] = xt = expected loss

 Homogeneous model: A(x,t) = xRt
 Rt a “return” variable
 For assets: x is position size and Rt is return or unit price

 Homogeneity implies
 Shape of aggregate loss distribution independent of volume
 No volume based diversification
 A(x,t) has constant coefficient of variation (volatility) with x

 Homogeneous models are not appropriate for insurance
 Consider probability of zero losses: Pr(xX=0)=Pr(X=0) independent of x
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2. Losses are not Homogeneous wrt Volume

 Consider probability of zero claims in small and large books
 Compound Poisson aggregate losses 
 Small: claim count 4
 Large: claim count 32

 Left plot unscaled; right plot scaled
 Homogeneous distributions would be indistinguishable in scaled plot
 Note decrease in variance on right hand plot
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2. Losses are not Homogeneous wrt Volume

 Geometric Brownian motion model is homogeneous

 St = S0 exp( (μ- σ2/2) t + σBt)
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3. Risk is not Volumetrically Diversifying

 Meaning
 CV( A(x,t) ) does not tend to zero as x increases, for fixed t

 Practical meaning
 It is impossible to diversify away all insurance risk by growing larger 
 Meyers presentation to RTS in 2005

 How to investigate?
 CV( A ) = CV( A / p ) =  CV( loss ratio ), p = fixed premium
 Look at volatility in loss ratio with volume

 Data source: NAIC Annual Statement, Schedule P
 Gross, ultimate loss ratios
 10 accident year history
 Major lines: WC, Commercial Auto, HO, PPA, CMP, Other Liability etc. 
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3. Risk is not Volumetrically Diversifying

2004 CV Gross Loss Ratio vs. Premium Commerical Multiperil
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Commercial Auto
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Risk not constant – not homogeneous

Risk decreases to asymptote
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All Lines
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4. Homogeneity is not “locally” appropriate

 Local approximation: one holding in a neighborhood of a point
 First-order equality
 Required by any theory considering derivatives (Myers-Read)

 Requires notion of derivative and direction

Local 
approximation

Not a local 
approximation
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4. Homogeneity is not “locally” appropriate

 For simplicity, ignore x, x=1

 X(t) = family aggregate losses, E(X(t)) = t
 X(t) (mixed) compound Poisson distribution

• Expected claim count t
• E(severity)=1

 Homogeneous approximation to family X(t) near t=1 is t X(1)

 Gives two maps from [0,∞)  { risks }, agreeing at t=1:

 m(t) = X(t), Meyers embedding

 k(t) = t X(1), asset or Kalkbrener embedding
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4. Homogeneity is not “locally” appropriate

 Let ρ : { risks }  R be a risk measure

 Tasche, Denault, Fischer, Myers-Read,… show we should be interested in  ∂ 
ρ / ∂ t, the rate of change of ρ with volume in the line

 Meyers, RTS 2005 showed for ρ = standard deviation

 ∂ ρk / ∂ t  ≠  ∂ ρm / ∂ t, ρk, ρm: [0,∞)  R

 In terms of derivatives of ρ (sphere example):

 ∂ ρk / ∂ t = DρX(1)(k’(1))   and ∂ ρm / ∂ t = DρX(1)(m’(1))

 Result implies directions m’(1) ≠ k’(1)

 What are m’(1) and k’(1)?
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4. Homogeneity is not “locally” appropriate
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4. Homogeneity is not “locally” appropriate

 Why is m drawn as the straight line?

 What is “+” in { risks }?
 Assets: vector space structure with basis of return variables (3X ok)
 Insurance: convolution of random variables (3X not ok, X1+ X2 + X3)
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4. Homogeneity is not “locally” appropriate

 Defining property for straight-line in { risks }
 m(s + t) = m(s) + m(t), convolution sum of random variables

 Levy process satisfies m(s + t) = m(s) + m(t)
 Additive, independent, homogeneous increments, stochastically 

continuous

 Examples of Levy processes
 Brownian motion, compound Poisson, drift, combinations

 What are k’(1) and m’(1)? 
 m(t) defines a family of probability measures
 Properties manifest through operator action on functions <f,m>=∫ f dm
 Fundamental Theorem of Calculus: <f,m(1)> – <f,m(0)> = ∫ m’(t)(f) dt
 Differentially: m’(f)(0) = limt0 [ E(f(Xt) – f(X0)) ] / t, Xt has distribution m(t)



18Risk Theory Society, April 2006

4. Homogeneity is not “locally” appropriate

 limt0 [ E(f(Xt) – f(X0)) ] / t  defines infinitesimal generator of Markov process

 For compound Poisson m, let J be distribution of jump sizes, E(J)=1
 For small t, Pr(jump) = λt, so, conditioning on presence of a jump

 E(f(Xt)) = λt E(f(J)) + (1- λt) f(0)

 and hence

 m’(f)(0) = λ (E(f(J)) – f(0))

 For k, E(f(Xt)) = E(f(tX)) = f(0) + tE(X) f’(0) + O(t2), so

 k’(f)(0) = E(X) f’(0), which is completely different
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4. Homogeneity is not “locally” appropriate
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5. Empirical Evidence

 Data supports hypothesis that risk is not volumetrically diversifying

 Can we say more?

 Four Levy process based models

 A(x,t) = X( xt )

 A(x,t) = X( xZ(t) ), Z a positive, increasing Levy process

 A(x,t) = X( xCt ), E(C)=1

 A(x,t) = X( xCZ(t) )



21Risk Theory Society, April 2006

Distribution of Normalized Loss Ratios
 Mixed compound Poisson: A = X1+…+XN, N|C ~ Poisson(nC), E(C)=1
 Normalized Loss Ratio NLR = A / E(A)
 Dichotomous behavior of normalized loss ratios

If C is constant, NLR converges to 1.0 in 
distribution

Illustration shows aggregates with Poisson 
frequency & larger & larger values of E(A)

If C is not constant, NLR converges to C in 
distribution

Illustration shows aggregates with negative 
binomial frequency (gamma mixing) & larger & 
larger values of E(A)

No parameter uncertainty: leads to 
unrealistic aggregate loss distribution as 

expected losses increase

Including parameter preserves actual 
variability observed in data for large 

insurers
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Key Technical Result

 If severity X has a variance then A / E(A) converges in distribution to C
 Proof:

Let MD be the moment generating function of D, for D=A, C, N or X. Let 
x=E(X), n=E(N), a=E(A)=nx. Then 

For some remainder function R(t)=O(t2). The assumptions on X 
guarantee that MX’(0)=x=E(X) & that the reminder term in Taylor’s 
expansion is O(t2). The result follows because a distribution is uniquely 
determined by its moment generating function. 
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Systemic Insurance Risk by Line

 Systemic risk quantified using study of Schedule P gross ultimate loss ratios 
 Systemic insurance risk includes line of business uncertainty caused by

 Pricing cycle
 Frequency & severity trend 
 Economic activity

 Loss reserve uncertainty
 Legal & judicial changes
 Weather
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Systemic Risk In Insurance Data
Commercial Auto
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Commercial Auto, $100M Threshold

Loss Ratio Relativities

0

0.050

0.100

0.150

0.200

0.250

0 0.50 1.00 1.50 2.00 2.50
Loss Ratio Relativity

Pr
ob

ab
ilit

y 
D

en
si

ty
LR

Co Avg

AY Avg

Mult Both Avg

Fits to Raw Residuals

0

0.050

0.100

0.150

0 0.50 1.00 1.50 2.00 2.50
Loss Ratio Relativity

Pr
ob

ab
ilit

y 
D

en
si

ty

LR
Wald Fit
EV Fit
Gamma Fit
LN Fit
SLN Fit

Total Premium and Loss

0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

1993 1995 1997 1999 2001 2003

$B
illi

on

Total Loss Total Premium

Laplace Fit to Adjusetd Residuals

0

0.050

0.100

0.150

0.200

0.250

0.300

0 0.50 1.00 1.50 2.00 2.50
Loss Ratio Relativity

Pr
ob

ab
ilit

y 
D

en
si

ty

Mult Both Avg

Laplace Fit



26Risk Theory Society, April 2006

Volumetric/Temporal Symmetry

 Consider volatility of A(x,t), A(2x,t/2), A(4x,t/4) etc.
 Same relationship between volatility and volume, xt
 Consistent with volumetric/temporal symmetry
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6. Four Levy Process Models

 A(x,t) = X( xt )

 A(x,t) = X( xZ(t) )

 A(x,t) = X( xCt )

 A(x,t) = X( xCZ(t) )

 A(x,t) = xR(t)

^
Plausible
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6. Four Levy Process Models

 Which model is consistent with the data?

 A(x,t) = X( xt ) no Volumetrically diversifying

 A(x,t) = X( xZ(t) ) no Volumetric/temporal asymmetry

 A(x,t) = X( xCt ) Yes

 A(x,t) = X( xCZ(t) ) no Volumetric/temporal asymmetry

 A(x,t) = xR(t) no Constant volatility with volume
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Directions and Credibility

 Levy process defines direction through jump distribution

 Frequency mixing, C or Z, corresponds to speed along direction

 Severity mixing corresponds to different direction
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7. Why bother with Levy Processes?

 Paper uses compound Poisson distributions as examples for simplicity

 Why bother with general Levy processes?

 “Infinite activity” Levy processes include processes with X(1) distributed as

 Lognormal

 Pareto

 Gamma

 Laplace

Weibull (α<1; α>1 is not infinitely divisible)
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8. So What? Can we see the impact in prices?

 Idiosyncratic risk matters, price should decrease with size
 Price = margin or spread over actuarial rate
 Size = expected loss = xt; t=1
 Large depends on particulars of severity distribution

 Umbrella and high limit policies
 Companies target higher price for higher process risk

 Reinsurer notion of “balance”
 Unbalanced cover has premium < limit

 Large accounts, package policies
 Probably top-line focus rather than risk theory
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9. Curious Pathology

 Maximizing solvency with cost of capital constraint using Lagrangian 
multipliers recovers Myers-Read “adds-up” assumption without assuming 
homogeneity…

 but, if losses are not homogeneous then the only solution is zero
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